New possibilities for biofilm control during chronic wounds healing
AbstractChronic wounds are a serious public health problem because they are often associated with chronic infections and require long-term, expensive treatment. Infection of wound surfaces leads to the formation of biofilms – multicellular structures consisting of metabolically active and inactive cells and a matrix. The composition of bacteria in biofilms may vary, as well as their effect on the wound healing process. Biofilms often show resistance to antibiotics and antiseptics, which makes traditional treatment ineffective.
The aim of the review is to evaluate the role of biofilms in chronic wound infections and their effect on the healing process of chronic wounds with an analysis of therapeutic strategies.
Material and methods. The databases PubMed, Scopus, Web of Science and Google Scholar were used to search for sources of scientific information. The key words are “chronic wounds”, “chronic wound infections”, “biofilm” and “therapeutic approaches to biofilm control”. As a result of the search, 1,250 articles were found, and 60 were selected for analysis.
Results and discussion. The scientific review briefly describes the healing process of chronic wounds infected with bacteria capable of forming biofilms. Methods of combating biofilm formation and methods of their resolution are presented.
Conclusion. Alternative therapeutic strategies for biofilm control include bacteriophage therapy, enzymes, antimicrobial photodynamic therapy, plasma treatment, and the use of antimicrobial peptides. The advantage of these methods is their clinical effectiveness and the ability to use them in combination with traditional approaches to treating chronic wounds.
Keywords: chronic wounds; chronic wound infections; biofilm; therapeutic approaches against biofilm
Funding. The study had no sponsorship.
Conflict of interest. Authors declare no conflict of interest.
Contribution. Concept development and planning, literature search and extraction, text writing, editing – Bekhalo V.A.; responsibility for the integrity of all parts of the review, editing, approval of the final version of the manuscript – Sysolyatina E.V.
For citation: Bekhalo V.A., Sysolyatina E.V. New possibilities for biofilm control during chronic wounds healing. Infektsionnye bolezni: novosti, mneniya, obuchenie [Infectious Diseases: News, Opinions, Training]. 2025; 14 (1): 80–9. https://doi.org/10.33029/2305-3496-2025-14-1-80-89 (in Russian)
References
- Abazari M., Ghaffari A., Rashidzadeh H., Badeleh S.M., et al. A systematic review on classification, identification, and healing process of burn wound healing. Int J Low Extrem Wounds. 2022; 21 (1): 18–30.
- Niwetbowornchai N., Chaisirirat T., Sriswasdi S., Saithong S., et al. Human neutrophil peptide regulates dermal fibroblast functions. Sci Rep. 2023; 13 (1): 17499. DOI: https://doi.org/10.1038/s41598-023-44889-8 PMID: 37840103; PMCID: PMC10577140.
- Diban F., Di Lodovico S., Di Fermo P., D’Ercole S., et al. Biofilms in chronic wound infections: innovative antimicrobial approaches using the in vitro Lubbock chronic wound biofilm model. Int J Mol Sci. 2023; 24 (2): 1004. DOI: https://doi.org/10.3390/ijms24021004
- Naskar A., Kim K.S. Recent advances in nanomaterial-based wound-healing therapeutics. Pharmaceutics. 2020; 12 (6): 499. DOI: https://doi.org/10.3390/pharmaceutics12060499 PMID: 32486142; PMCID: PMC7356512.
- Botelho Sampaio de Oliveira K., Lopes Leite M., Albuquerque Cunha V., Brito da Cunha N. et al. Challenges and advancements in antimicrobial peptide development. Drug Discov Today. 2023; 28 (8): 103629. DOI: https://doi.org/10.1016/j.drudis.2023.103629 PMID: 37230283.
- Hassannia M., Naderifar M., Salamy S., Akbarizadeh M.R., et al. Engineered phage enzymes against drug-resistant pathogens: a review on advances and applications. Bioprocess Biosyst Eng. 2024; 47 (3): 301–12. DOI: https://doi.org/10.1007/s00449-023-02938-6 PMID: 37962644.
- Manoharan R.R., Prasad A., Pospíšil P., Kzhyshkowska J. ROS signaling in innate immunity via oxidative protein modifications. Front Immunol. 2024; 15: 1359600. DOI: https://doi.org/10.3389/fimmu.2024.1359600 PMID: 38515749; PMCID: PMC10954773.
- Wilkinson H.N., Hardman M.J. Wound healing: cellular mechanisms and pathological outcomes. Open Biol. 2020; 10 (9): 200223. DOI: https://doi.org/10.1098/rsob.200223 PMID: 32993416; PMCID: PMC7536089.
- Hrynyshyn A., Simões M., Borges A. Biofilms in surgical site infections: recent advances and novel prevention and eradication strategies. Antibiotics. 2022; 11 (1): 69. DOI: https://doi.org/10.3390/antibiotics11010069 PMID: 35052946; PMCID: PMC8773207.
- Zhao A., Sun J., Liu Y. Understanding bacterial biofilms: from definition to treatment strategies. Front Cell Infect Microbiol. 2023; 13: 1137947. DOI: https://doi.org/10.3389/fcimb.2023.1137947
- Muhammad M.H., Idris A.L., Fan X., Guo Y., et al. Beyond risk: bacterial biofilms and their regulating approaches. Front Microbiol. 2020; 11: 928. DOI: https://doi.org/10.3389/fmicb.2020.00928
- Dutt Y., Dhiman R., Singh T., Vibhuti A., et al. The association between biofilm formation and antimicrobial resistance with possible ingenious bio-remedial approaches. Antibiotics. 2022; 11: 930. URL: https://doi.org/10.3390/antibiotics11070930
- Qin S., Xiao W., Zhou C., et al. Pseudomonas aeruginosa: pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics. Signal Transduct Target Ther. 2022; 7: 199. DOI: https://doi.org/10.1038/s41392-022-01056-1
- Idrees M., Sawant S., Karodia N., Rahman A. Staphylococcus aureus biofilm: morphology, genetics, pathogenesis and treatment strategies. Int J Environ Res Public Health. 2021; 18 (14): 7602. DOI: https://doi.org/10.3390/ijerph18147602 PMID: 34300053; PMCID: PMC8304105.
- Erkihun M., Asmare Z., Endalamew K., Getie B., et al. Medical scope of biofilm and quorum sensing during biofilm formation: systematic review. Bacteria. 2024; 3: 118–35. DOI: https://doi.org/10.3390/bacteria3030008
- Niu H., Gu J., Zhang Y. Bacterial persisters: molecular mechanisms and therapeutic development. Signal Transduct Target Ther. 2024; 9: 174. DOI: https://doi.org/10.1038/s41392-024-01866-5
- Maisetta G., Batoni G. Editorial: interspecies interactions: effects on virulence and antimicrobial susceptibility of bacterial and fungal pathogens. Front Microbiol. 2020; 11; 1922. DOI: https://doi.org/10.3389/fmicb.2020.01922 PMID: 32983002; PMCID: PMC7479088.
- Sen C.K., Roy S., Mathew-Steiner S.S., Gordillo G.M. Biofilm management in wound care. Plast Reconstr Surg. 2021; 148 (2): 275e–88e. DOI: https://doi.org/10.1097/PRS.0000000000008142 PMID: 34398099; PMCID: PMC8439557.
- Haesler E., Swanson T., Ousey K., Larsen D., et al. Establishing a consensus on wound infection definitions. J Wound Care. 2022; 31 (suppl 12): S48–59. DOI: https://doi.org/10.12968/jowc.2022.31.Sup12.S48 PMID: 36475847.
- Cleaver L., Garnett J.A. How to study biofilms: technological advances in clinical biofilm research. Front Cell Infect Microbiol. 2023; 13: 1335389. DOI: https://doi.org/10.3389/fcimb.2023.1335389
- Chegini Z., Khoshbayan A., Taati Moghadam M., Farahani I. Bacteriophage therapy against Pseudomonas aeruginosa biofilms: a review. Ann Clin Microbiol Antimicrob. 2020; 19: 1–17.
- Fortaleza J.A.G., Ong C.J.N., De Jesus R. Efficacy and clinical potential of phage therapy in treating methicillin-resistant Staphylococcus aureus (MRSA) infections: a review. Eur J Microbiol Immunol. 2024; 14 (1): 13–25. DOI: https://doi.org/10.1556/1886.2023.00064 PMID: 38305804; PMCID: PMC10895361.
- Alipour-Khezri E., Skurnik M., Zarrini G. Pseudomonas aeruginosa bacteriophages and their clinical applications. Viruses. 2024; 16 (7): 1051. DOI: https://doi.org/10.3390/v16071051 PMID: 39066214; PMCID: PMC11281547.
- Hasan M., Ahn J. Evolutionary dynamics between phages and bacteria as a possible approach for designing effective phage therapies against antibiotic-resistant bacteria. Antibiotics. 2022; 11 (7): 915. DOI: https://doi.org/10.3390/antibiotics11070915 PMID: 35884169; PMCID: PMC9311878.
- Manohar P., Loh B., Nachimuthu R., Leptihn S. Phage-antibiotic combinations to control Pseudomonas aeruginosa-Candida two-species biofilms. Sci Rep. 2024; 14 (1): 9354. DOI: https://doi.org/10.1038/s41598-024-59444-2 PMID: 38653744; PMCID: PMC11039464.
- Roach D.R., Noël B., Chollet-Martin S., de Jode M., et al. Human neutrophil response to pseudomonas bacteriophage PAK_P1, a therapeutic candidate. Viruses. 2023; 15 (8): 1726. DOI: https://doi.org/10.3390/v15081726 PMID: 37632068; PMCID: PMC10458410.
- Singh J., Yeoh E., Fitzgerald D.A., Selvadurai H. A systematic review on the use of bacteriophage in treating Staphylococcus aureus and Pseudomonas aeruginosa infections in cystic fibrosis. Pediatr Respir Rev. 2023; 48: 3–9. DOI: https://doi.org/10.1016/j.prrv.2023.08.001 PMID: 37598024.
- Koderi Valappil S., Shetty P., Deim Z., Terhes G., et al. Survival comes at a cost: a coevolution of phage and its host leads to phage resistance and antibiotic sensitivity of Pseudomonas aeruginosa multidrug resistant strains. Front Microbiol. 2021; 12: 783722. DOI: https://doi.org/10.3389/fmicb.2021.783722
- Zhang J., Wu H., Wang D., Zhang C., et al. Intracellular glycosyl hydrolase PslG shapes bacterial cell fate, signaling, and the biofilm development of Pseudomonas aeruginosa. bioRxiv. 2021. DOI: https://doi.org/10.1101/2021.08.17.456744
- Knecht L.E., Veljkovic M., Fieseler L. Diversity and function of phage encoded depolymerases. Front Microbiol. 2020; 10; 2949. DOI: https://doi.org/10.3389/fmicb.2019.02949 PMID: 31998258; PMCID: PMC6966330.
- Danis-Wlodarczyk K.M., Wozniak D.J., Abedon S.T. Treating bacterial infections with bacteriophage-based enzybiotics: in vitro, in vivo and clinical application. Antibiotics. 2021; 10 (12): 1497. DOI: https://doi.org/10.3390/antibiotics10121497 PMID: 34943709; PMCID: PMC8698926.
- Merz M., Schiffer C.J., Klingl A., Ehrmann M.A. Characterization of the major autolysin (AtlC) of Staphylococcus carnosus. BMC Microbiol. 2024; 24 (1): 77. DOI: https://doi.org/10.1186/s12866-024-03231-6 PMID: 38459514; PMCID: PMC10921637.
- Gondil V.S., Chhibber S. Bacteriophage and endolysin encapsulation systems: a promising strategy to improve therapeutic outcomes. Front Pharmacol. 2021; 12: 675440. DOI: https://doi.org/10.3389/fphar.2021.675440 PMID: 34025436; PMCID: PMC8138158.
- Vasina D.V., Antonova N.P., Grigoriev I.V., Yakimakha V.S., et al. Discovering the potentials of four phage endolysins to combat Gram-negative infections. Front Microbiol. 2021; 12: 748718. DOI: https://doi.org/10.3389/fmicb.2021.748718 PMID: 34721353; PMCID: PMC8548769.
- Khan F.M., Rasheed F., Yang Y., Liu B., et al. Endolysins: a new antimicrobial agent against antimicrobial resistance. strategies and opportunities in overcoming the challenges of endolysins against Gram-negative bacteria. Front Pharmacol. 2024; 15: 1385261. DOI: https://doi.org/10.3389/fphar.2024.1385261
- Lendel A.M., Antonova N.P., Grigoriev I.V., Usachev E.V., et al. Biofilm-disrupting effects of phage endolysins LysAm24, LysAp22, LysECD7, and LysSi3: breakdown the matrix. World J Microbiol Biotechnol. 2024; 40 (6): 186. DOI: https://doi.org/10.1007/s11274-024-03999-9 PMID: 38683213.
- Thi M.T.T., Wibowo D., Rehm B.H.A. Pseudomonas aeruginosa biofilms. Int J Mol Sci. 2020; 21 (22): 8671. DOI: https://doi.org/10.3390/ijms21228671 PMID: 33212950; PMCID: PMC7698413.
- Songca S.P., Adjei Y. Applications of antimicrobial photodynamic therapy against bacterial biofilms. Int J Mol Sci. 2022; 23 (6): 3209. DOI: https://doi.org/10.3390/ijms23063209 PMID: 35328629; PMCID: PMC8953781.
- Martins Antunes de Melo W.C., Celiešiūtė-Germanienė R., Šimonis P., Stirkė A. Antimicrobial photodynamic therapy (aPDT) for biofilm treatments. possible synergy between aPDT and pulsed electric fields. Virulence. 2021; 12 (1): 2247–72. DOI: https://doi.org/10.1080/21505594.2021.1960105 PMID: 34496717; PMCID: PMC8437467.
- Juan C.A., Pérez de la Lastra J.M., Plou F.J. Pérez-Lebeña E. The chemistry of reactive oxygen species (ROS) revisited: outlining their role in biological macromolecules (DNA, lipids and proteins) and induced pathologies. Int J Mol Sci. 2021; 22 (9): 4642. DOI: https://doi.org/10.3390/ijms22094642 PMID: 33924958; PMCID: PMC8125527.
- Gunaydin G., Gedik M.E., Ayan S. Photodynamic therapy – current limitations and novel approaches. Front Chem. 2021; 9: 691697. DOI: https://doi.org/10.3389/fchem.2021.691697
- Dediu V., Ghitman J., Gradisteanu Pircalabioru G., Chan K.H., et al. Trends in photothermal nanostructures for antimicrobial applications. Int J Mol Sci. 2023; 24 (11): 9375. DOI: https://doi.org/10.3390/ijms24119375 PMID: 37298326; PMCID: PMC10253355.
- Fatima H., Charinpanitkul T., Kim K.S. Fundamentals to apply magnetic nanoparticles for hyperthermia therapy. Nanomaterials. 2021; 11 (5): 1203. DOI: https://doi.org/10.3390/nano11051203 PMID: 34062851; PMCID: PMC8147361.
- Pérez-Laguna V., García-Luque I., Ballesta S., Rezusta A., et al. Photodynamic therapy combined with antibiotics or antifungals against microorganisms that cause skin and soft tissue infections: a planktonic and biofilm approach to overcome resistances. Pharmaceuticals. 2021; 14 (7): 603.
- Xu Y., Liu S., Zhao H., Li Y., et al. Ultrasonic irradiation enhanced the efficacy of antimicrobial photodynamic therapy against methicillin-resistant Staphylococcus aureus biofilm. Ultrasound Sonochem. 2023; 97: 106423. DOI: https://doi.org/10.1016/j.ultsonch.2023.106423 PMID: 37235946; PMCID: PMC10230259.
- Cong C., He Y., Zhao S., Zhang X., et al. Diagnostic and therapeutic nanoenzymes for enhanced chemotherapy and photodynamic therapy. J Mater Chem B. 2021; 9 (18): 3925–34. DOI: https://doi.org/10.1039/d0tb02791j PMID: 33942817.
- Sisakhtnezhad S., Rahimi M., Mohammadi S. Biomedical applications of MnO2 nanomaterials as nanozyme-based theranostics. Biomed Pharmacother. 2023; 163: 114833. DOI: https://doi.org/10.1016/j.biopha.2023.114833 PMID: 37150035.
- Акишев Ю.С. Низкотемпературная плазма при атмосферном давлении и ее возможности для приложений // Известия вузов. Химия и химическая технология. 2019. Т. 62, вып. 8. С. 26–60. [Akishev Yu.S. Low-temperature plasma under atmospheric pressure and its possibilities for applications. Izvestiya vuzov. Khimiya i khimicheskaya tekhnologiya [Proceedings of Higher Educational Institutions. Chemistry and Chemical Technology]. 2019; 62 (8): 26–60. (in Russian)]
- Prasad K., Sasi S., Weerasinghe J., Levchenko I., et al. Enhanced antimicrobial activity through synergistic effects of cold atmospheric plasma and plant secondary metabolites: opportunities and challenges. Molecules. 2023; 28 (22): 7481. DOI: https://doi.org/10.3390/molecules28227481 PMID: 38005203; PMCID: PMC10673009.
- Das S., Gajula V.P., Mohapatra S., Singh G., et al. Role of cold atmospheric plasma in microbial inactivation and the factors affecting its efficacy. Health Sci Rev. 2022; 4: 100037.
- Sysolyatina E.V., Mukhachev A.Y., Yurova M., Grushin M.E., et al. Role of the charged particles in bacteria inactivation by plasma of a positive and negative corona in ambient air. Plasma Process Polym. 2014; 11: 315–34.
- Mai-Prochnow A., Zhou R., Zhang T., Ostrikov K.K., et al. Interactions of plasma-activated water with biofilms: inactivation, dispersal effects and mechanisms of action. NPJ Biofilms Microbiomes. 2021; 7 (1): 11. DOI: https://doi.org/10.1038/s41522-020-00180-6 PMID: 33504802; PMCID: PMC7841176.
- Kolimi P., Narala S., Nyavanandi D., Youssef A.A.A., et al. Innovative treatment strategies to accelerate wound healing: trajectory and recent advancements. Cells. 2022; 11 (15): 2439. DOI: https://doi.org/10.3390/cells11152439 PMID: 35954282; PMCID: PMC9367945.
- Hiller J., Stratmann B., Timm J., Costea T.C., et al. Enhanced growth factor expression in chronic diabetic wounds treated by cold atmospheric plasma. Diabetes Med. 2022; 39 (6): e14787. DOI: https://doi.org/10.1111/dme.14787 PMID: 35007358.
- Cresti L., Cappello G., Pini A. Antimicrobial peptides towards clinical application-a long history to be concluded. Int J Mol Sci. 2024; 25 (9): 4870. DOI: https://doi.org/10.3390/ijms25094870 PMID: 38732089; PMCID: PMC11084544.
- Goki N.H., Tehranizadeh Z.A., Saberi M.R., Khameneh B., et al. Structure, function, and physicochemical properties of pore-forming antimicrobial peptides. Curr Pharm Biotechnol. 2024; 25 (8): 1041–57. DOI: https://doi.org/10.2174/0113892010194428231017051836 PMID: 37921126.
- Boparai J.K., Sharma P.K. Mini review on antimicrobial peptides, sources, mechanism and recent applications. Protein Peptide Lett. 2020; 27 (1): 4–16.
- Zhang Q.Y., Yan Z.B., Meng Y.M., Hong X.Y., et al. Antimicrobial peptides: mechanism of action, activity and clinical potential. Mil Med Res. 2021; 8 (1): 48. DOI: https://doi.org/10.1186/s40779-021-00343-2 PMID: 34496967; PMCID: PMC8425997.
- Kordi M., Talkhounche P.G., Vahedi H., Farrokhi N., et al. Heterologous production of antimicrobial peptides: notes to consider. Protein J. 2024; 43 (2): 129–58. DOI: https://doi.org/10.1007/s10930-023-10174‑w PMID: 38180586.
- Ahmad A., Khan J.M., Bandy A.A. Systematic review of the design and applications of antimicrobial peptides in wound healing. Cureus. 2024; 16 (4): e58178. DOI: https://doi.org/10.7759/cureus.58178 PMID: 38741875; PMCID: PMC11089580.