The influence of spacial and temporal factors for genetic evolution of filoviruses

Abstract

The influence of special and temporal factors for genetic evolution of filoviruses is conducted.

With taking into consideration likely origin of all filoviruses from common ancestor, different level of pathogenicity of this agents may be consequence of its evolutionary change. The evolutionary change of virus depends upon its hosts, the widest range of natural hosts and region of its spreading, the higher of evolutions rate.

The time of divergence from common ancestor, numbers of nucleotide exchanges for this time, rate of evolution are determined for different filoviruses based on results of molecular-genetic analyze received by a number of authors.

The age of Filoviridae family is 10 400 years, the range of evolutions rate for different kinds of filoviruses is from 0.46×10-4 (for Ebola-Zaire virus) to 8.21×10-4 nucleotide exchanges per year (for Ebola-Reston virus).

The influence of special and temporal factors on molecular evolution of Ebola-Zaire virus in time of epidemic in West Africa in 2013–2016 is conducted. The absence of alteration of evolutionary rate of Ebola virus in epidemic and no epidemic periods is ascertained.

Keywords: filoviruses; Marburg virus; Ebola virus; genome; evolutionary rate; nucleotide exchanges; phylogenetic analyze; Bayesian method

Funding. The study had no sponsor support.

Conflict of interest. The authors declare no conflict of interest.

Contribution. The authors contributed equally to this article.

For citation: Onishchenko G.G., Sizikova T.E., Petrov A.A., Lebedev V.N., Borisevich S.V. The influence of spacial and temporal factors for genetic evolution of filoviruses. Infektsionnye bolezni: novosti, mneniya, obuchenie [Infectious Diseases: News, Opinions, Training]. 2025; 14 (1): 6–15. https://doi.org/10.33029/2305-3496-2025-14-1-06-15 (in Russian)

References

  1. Dolzhikova I.V., Shcherbinin D.N., Logunov D.Yu., Gintsburg A.L. Ebola virus (Filoviridae: Ebolavirus: Zaire ebolavirus): fatal adaptive mutations. Voprosy virusologii [Problems of Virology]. 2021; 66 (1): 7–16. (in Russian)
  2. Rodriguez L.L., De Roo A., Guimard Y., Trappier S.G., Sanchez A., Bressler D., et al. Persistence and genetic stability of Ebola virus during the outbreak in Kikwit, Democratic Republic of the Congo, 1995. J Infect Dis. 1999; 179 (1): 170–6. DOI: https://doi.org/10.1086/514291
  3. Towner J.S., Amman B.R., Sealy T.K., Carroll S.A., Comer J.A., Kemp A., et al. Isolation of genetically diverse Marburg viruses from Egyptian fruit bats. PLoS Pathog. 2009; 5 (7): 1–9. DOI: https://doi.org/10.1371/journal.ppat.1000536
  4. URL: https://www.ictv.org
  5. URL: https://talk.ictvonline.org/ictv-reports/ictv_online_report/negative-sense-rna-viruses/w/filoviridae
  6. Wang L., Shi Z., Yang X.-L., Kuhn J.H. Create one new genus including one new species in the mononegaviral family Filoviridae. ICTV. No. 2019.011M.
  7. Yang X.-L., Tan C.W., Anderson D.E., Jiang R.-D., Li B., Zhang W., et al. Characterization of filovirus (Mengla virus) from Rousettus bats in China. Nat Microbiol. 2019. URL: https://www.nature.com/articles/s1564-018-0328‑y DOI: https://doi.org/10.1038/s1564-018-0328‑y
  8. Suzuki Y., Gojobori T. The origin and evolution of Ebola and Marburg viruses. Mol Biol Evol. 1997; 14 (8): 800–6. DOI: https://doi.org/0.1093/oxfordjournals.molbev.a025820
  9. Wertheim J.O., Kosakovsky Pond S.L. Purifying selection can obscure the ancient age of viral lineages. Mol Biol Evol. 2011; 28 (12): 3355–65. DOI: https://doi.org/10.1093/molbev/msr170
  10. Negredo A., Palacios G., Vazquez-Moron S., Gonzalez F., Dopazo H., Molero F., et al. Discovery of an ebolavirus-like filovirus in Europe. PLoS Pathog. 2011; 7 (10): 1–8. DOI: https://doi.org/10.1371/journal.ppat.1002304
  11. Taylor D.J., Dittmar K., Ballinger M.J., Bruenn J.A. Evolutionary maintenance of filovirus-like genes in bat genomes. BMC Evol Biol. 2011; 11: 336. DOI: https://doi.org/10.1186/1471-2148-11-336
  12. Taylor D.J., Leach R.W., Bruenn J. Filoviruses are ancient and integrated into mammalian genomes. BMC Evol. Biol. 2010; 10: 193. DOI: https://doi.org/10.1186/1471-2148-10-193
  13. Walsh P.D., Biek R., Real L.A. Wave-like spread of Ebola Zaire. PLoS Biol. 2005; 3 (11): 1–8. DOI: https://doi.org/10.1371/journal.pbio.0030371
  14. Wittmann T.J., Biek R., Hassanin A., Rouquet P., Reed P., Yaba P., et al. Isolates of Zaire ebolavirus from wild apes reveal genetic lineage and recombinants. Proc Natl Acad Sci USA. 2007; 104 (43): 17 123–7. DOI: https://doi.org/10.1073/pnas.0704076104
  15. Carroll S.A., Towner J.S., Sealy T.K., McMullan L.K., Khristova M.L., Burt F.J., et al. Molecular evolution of viruses of the family Filoviridae based on 97 whole-genome sequences. J Virol. 2013; 87 (5): 2608–16. DOI: https://doi.org/10.1128/jvi.03118-12
  16. Goldstein T., Anthony S.J., Gbakima A., Bird B.H., Bangura J., Tremeau-Bravard A., et al. The discovery of Bombali virus adds further support for bats as hosts of ebolaviruses. Nat Microbiol. 2018; 3 (10): 1084–89. DOI: https://doi.org/10.1038/s41564-018-0227-2
  17. Genus: Ebolavirus. International Committee on Taxonomy of Viruses. Retrieved 15 October 2019.
  18. Forbes K.M., Webala P.W., Jääskeläinen A.J., et al. Bombali Ebola virus in Mops condylurus Bat, Kenya. Emerg Infect Dis. 2019; 25 (5). DOI: https://doi.org/10.3201/eid2505.181666
  19. New Ebola species is reported for first time in a decade. STAT. URL: https://statnews.com 27 July 2018. Retrieved 27 July 2018.
  20. Biek R., Walsh P.D., Leroy E.M., Real L.A. Recent common ancestry of Ebola Zaire virus found in a bat reservoir. PLoS Pathog. 2006; 2 (10): 1–2. DOI: https://doi.org/10.1371/journal.ppat.0020090
  21. Grard G., Biek R., Muyembe-Tamfum J.J., Fair J., Wolfe N., Formenty P., et al. Emergence of divergent Zaire Ebola virus strains in Democratic Republic of the Congo in 2007 and 2008. J Infect Dis. 2011; 204 (3): 776–84. DOI: https://doi.org/10.1093/infdis/jir364
  22. Thompson J.D., Gibson T.J., Plewniak F., Jeanmougin F., Higgins D.G. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997; 25 (24): 4876–82. DOI: https://doi.org/10.1093/nar/25.24.4876
  23. Katoh K., Kuma K., Toh H., Miyata T. MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res. 2005; 33 (2): 511–8. DOI: https://10.1093/nar/gki198
  24. Towner J.S., Rollin P.E., Bausch D.G., Sanchez A., Crary S.M., Vincent M., et al. Rapid diagnosis of Ebola hemorrhagic fever by reverse transcription-PCR in an outbreak setting and assessment of patient viral load as a predictor of outcome. J Virol. 2004; 78 (8): 4330–41. DOI: https://doi.org/10.1128/jvi.78.8.4330-4341.2004
  25. Duraffour S., Malvy D., Sissoko D. How to treat Ebolavirus infections? A lesson from the field. Curr Opin Virol. 2017; 24: 9–15. DOI: https://doi.org/10.1016/j.coviro.2017.03.003
  26. Kaydanov L.Z. Genetics of populations. Moscow: Vysshaya shkola, 1996: 320 p. (in Russian)
  27. URL: https://doctorpiter.ru/articles/700106/
  28. Centers for Disease Control and Prevention. Update: filovirus infections among persons with occupational exposure to nonhuman primates. 1997 [Electronic resource]. URL: http://www.cdc.gov/vhf/ebola/reston/nonhumanprimates
  29. Miranda M.E.G., Miranda N.L.J. Reston ebolavirus in humans and animals in the Philippines: a review. J Infect Dis. 2011; 204: 757–60. DOI: https://doi.org/10.1093/infdis/jir296
  30. Sanchez A., Geisbert T.W., Feldmann H. Filoviridae: Marburg and Ebola viruses. In: D.M. Knipe, P.M. Howley (eds). Fields Virology. 5th ed. Philadelphia, PA: Lippincott Williams & Wilkins, 2007: 1279–304.
  31. Smith M.W. Field aspects of the Marburg virus outbreak: 1967. Primate Suppl. 1982; 7: 11–5.
  32. Towner J.S., Khristova M.L., Sealy T.K., Vincent M.J., Erickson B.R., Bawiec D.A., et al. Marburgvirus genomics and association with a large hemorrhagic fever outbreak in Angola. J Virol. 2006; 80 (13): 6497–516. DOI: https://doi.org/10.1128/jvi.00069-06
  33. Towner J.S., Sealy T.K., Khristova M.L., Albarino C.G., Conlan S., Reeder S.A. Newly discovered Ebola virus associated with hemorrhagic fever outbreak in Uganda. PLoS Pathog. 2008; 4 (11): e1000212.
  34. Carroll M.W., Matthews D.A., Hiscox J.A., Elmore M.J., Pollakis G., Rambaut A., et al. Temporal and spatial analysis of the 2014–2015 Ebola virus outbreak in West Africa. Nature. 2015; 524 (7563): 97–101. DOI: https://doi.org/10.1038/nature14594
  35. Gire S.K., Goba A., Andersen K.G., Sealfon R.S., Park D.J., Kanneh L., et al. Genomic surveillance elucidates Ebola virus origin and transmission during the 2014 outbreak. Science. 2014; 345 (6202): 1369–72. DOI: https://doi.org/10.1126/science.1259657
  36. Tong Y.G., Shi W.F., Liu D., Qian J., Liang L., Bo X.C., et al. Genetic diversity and evolutionary dynamics of Ebola virus in Sierra Leone. Nature. 2015; 524 (7563): 93–6. DOI: https://doi.org/10.1038/nature14490
  37. Virus specificity factors. The virulence of viruses. URL: https://meduniver.com/Medical/Microbiology/99.html (in Russian)
  38. Leroy E.M., Baize S., Mavoungou E., Apetrey C. Sequence analysis of the GP, NP, VP40 and VP24 genes of Ebola virus isolated from deceases, surviving and asymptomatically infeсted individuals during the 1996 outbreak in Gabon: comparative studies and phylogenetic characterization. J Gen Virol. 2002; 83: 56–73. DOI: https://doi.org/10.1099/0022-1317-83-1-67
  39. Mateo M., Carbonnelle C., Reynard O., Kolesnikova L., Nemirov K., Page A., et al. VP24 is a molecular determinant of Ebola virus associated with increasing pathogenicity. Genome Biol. 2014; 15 (11): 540. DOI: https://doi.org/10.1186/preaccept-1724277741482641
  40. Nanclares C., Kapetshi J., Lionetto F., de la Rosa O., Tamfun J.-J.M., Alia M., et al. Ebola virus disease, Democratic Republic of the Congo, 2014. Emerg Infect Dis. 2016; 22 (9): 9. DOI: https://doi.org/10.3201/eid2209.160354
  41. Dudas S., Rambaut A. Phylogenetic analysis of Guinea EBOV 2014 Ebolavirus outbreak. PLoS Curr. 2014; 6.
  42. Maganga G.D., Kapetshi J., Berthet N., Kebela Ilunga B., Kabange F., Mbala Kingebeni P. Ebola virus disease in the Democratic Republic of Congo. N Engl J Med. 2014; 371 (22): 2083–91. DOI: https://doi.org/10.1056/NEJMoa1411099
  43. Nikegasong J.N., Onyebujoh P. Response to the Ebola virus disease outbreak in DRC. 2018; 391: 2395–8. DOI: https://doi.org/10.1016/S0140-6736(18)31326-6

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)

CHIEF EDITOR
Aleksandr V. Gorelov
Academician of the Russian Academy of Sciences, MD, Head of Infection Diseases and Epidemiology Department of the Scientific and Educational Institute of Clinical Medicine named after N.A. Semashko ofRussian University of Medicine, Ministry of Health of the Russian Federation, Professor of the Department of Childhood Diseases, Clinical Institute of Children's Health named after N.F. Filatov, Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation, Deputy Director for Research, Central Research Institute of Epidemiology, Rospotrebnadzor (Moscow, Russian Federation)
geotar-digit

Journals of «GEOTAR-Media»